
# **ENDOCRINE SYSTEM**

| ENDOCRINE                                      | EXOCRINE                                   |
|------------------------------------------------|--------------------------------------------|
| Secretions enter blood                         | Secretions exit the body                   |
| Control long term activity for<br>target organ | Control short term activity                |
| Secretes hormones into<br>extracellular fluids | Transports secretions to target<br>tissues |
| Ductless                                       | Via ducts                                  |



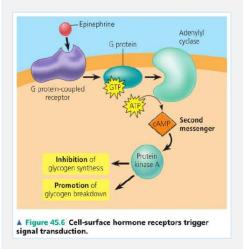
## AMINE HORMONE ACTION

- 1. Non-lipid soluble protein hormones bind to a cell surface receptor
- 2. Results in an activation of a signalling pathway by first messenger
- 3. Activates G-protein converting ATP to cAMP
- 4. Activates second messenger in cytoplasm (cAMP)
- 5. cAMP activates a cell-specific response
- 6. Enzyme (phosphodiesterase) breaks down cAMP and terminates signal



#### AMINE HORMONES

Non-lipid soluble/ water soluble


Cannot diffuse straight through membrane

Attach to receptor on membrane

Secondary messenger is sent to receptor inside of cell

## **STEROID HORMONE ACTION**

- 1. Lipid soluble enters target cell
- 2. Combines with receptor protein on an organelle or in nucleus
- 3. Hormone receptor complex binds to DNA
- 4. Activates formation of particular proteins
- 5. Affects transcription and translation



#### **STEROID HORMONES**

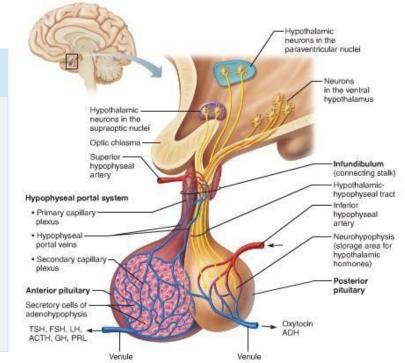
#### Lipid soluble

Diffuse straight through cell membrane

Binds to receptor inside cell

Activates hormone receptor complex

## PITUITARY GLAND


#### ANTERIOR PITUITARY

| HORMONE                                |                       | EFFECTS                                                                                         |
|----------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|
| FOLLICLE STIMUATING<br>HORMONE (FSH)   | - Ovaries<br>- Testes | <ul><li>Growth of Follicles</li><li>Sperm production</li></ul>                                  |
| LUITENISING HORMONE (LH)               | - Ovaries<br>- Testes | <ul><li> Ovulation and corpus<br/>leutem formation</li><li> Secretion of testosterone</li></ul> |
| GROWTH HORMONE (GH)                    | All cells             | Growth and synthesis                                                                            |
| THYROID STIMULATING<br>HORMONE (TSH)   | Thyroid gland         | Secretes hormones such as thyroxine from thyroid                                                |
| ADRENOCORTICOTROPHIC<br>HORMONE (ACTH) | Adrenal Cortex        | Secretes hormones such as cortisol from adrenal cortex                                          |
| PROLACTIN (PRL)                        | Mammary Glands        | Milk production                                                                                 |

#### POSTERIOR PITUITARY

| ANTIDIURETIC HORMONE<br>(ADH) | Kidneys                                         | Increase the reabsorption of water                             |
|-------------------------------|-------------------------------------------------|----------------------------------------------------------------|
| OXYTOCIN (OT)                 | <ul><li>Uterus</li><li>Mammary Glands</li></ul> | <ul><li>Uterine contractions</li><li>Release of milk</li></ul> |

| <ul> <li>Controlled by<br/>releasing and<br/>inhibiting factors</li> <li>Produces its own<br/>hormones</li> <li>Connected to<br/>hypothalamus by<br/>network of blood<br/>vessels</li> </ul> | <ul> <li>Stored and release<br/>hormones</li> <li>Hormones from<br/>hypothalamus</li> <li>Connected to<br/>hypothalamus by<br/>nerve fibres</li> <li>Produced in<br/>neurosecretory cells</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



## **ENDOCRINE DISRUPTIONS**

| HYPERTHYROIDISM | thyroid gland<br>produces too<br>much hormone<br>thyroxine                    | Cells are<br>overstimulated,<br>rapid heartbeat,<br>weight loss,<br>increased appetite,<br>fatigue, sweating,<br>anxiety                                        | <ul> <li>Drugs that block<br/>the thyroid<br/>gland's use of<br/>iodine</li> <li>Surgery to<br/>remove thyroid<br/>gland</li> </ul>             | - Blood tests to test<br>iodine, TSH and<br>thyroxine levels in<br>blood | - Genetic             |
|-----------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|
| hypothyroidism  | Insufficient<br>amount of<br>thyroxine<br>produced by<br>the thyroid<br>gland | Metabolic processes<br>are decreased, slow<br>heart rate, weight<br>gain, fatigue, lack of<br>tolerance to the<br>cold, swelling of the<br>face and<br>'goitre' | <ul> <li>lodine tablets if<br/>due to iodine<br/>deficiency</li> <li>Recombinant<br/>DNA technology<br/>used to make T3<br/>&amp; T4</li> </ul> |                                                                          | - Diet high in iodine |

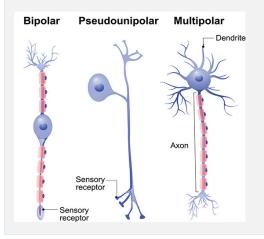
| TYPE 1 DIABETES | Due to fault in immune<br>system causing<br>destruction of beta cells<br>in pancreas (no insulin is<br>produced) | Blood fasting test and<br>finger prick test to test<br>blood glucose levels | <ul> <li>No cure</li> <li>Regular injections of<br/>insulin</li> <li>Recombinant DNA<br/>used to insert insulin<br/>cells into body</li> </ul> | - Genetic, no<br>prevention                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| TYPE 2 DIABETES | Beta cells produce insulin<br>but the body<br>cells are unresponsive to<br>it                                    |                                                                             | <ul><li>No cure</li><li>Medication</li></ul>                                                                                                   | <ul><li>Physical exercise</li><li>Healthy diet</li><li>No smoking</li></ul> |

## **ENDOCRINE GLANDS**

|             |                                                            | SECRETION                                                                          | REGULATION                                       |
|-------------|------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|
| PINEAL      | Happiness levels<br>Influence sexual<br>development/ sleep | Serotonin<br>Melatonin                                                             |                                                  |
| THYROID     |                                                            | Thyroxine                                                                          | Maintain body temp/ metabolic rate               |
| -           |                                                            | Calcitonin                                                                         | Calcium and phosphate in blood                   |
| PARATHYROID |                                                            | Parathormone                                                                       | ↑ Calcium and phosphate in blood                 |
| THYMUS      | Production and<br>maturation of T-<br>lymphocytes          | Thymosin's                                                                         |                                                  |
| ADRENAL     |                                                            | Medulla: (Nor)epinephrine<br>(Nor)adrenaline<br>Cortex:<br>Aldosterone<br>Cortisol | Sodium Potassium<br>Blood pressure/ metabolism   |
| PANCREAS    |                                                            | Glucagon<br>Insulin                                                                | Increase blood glucose<br>Decrease blood glucose |
| GONADS      | For growth and masculinity/ femininity                     | Testosterone<br>Oestrogen/ progesterone                                            |                                                  |

## **NERVOUS SYSTEM**

#### CLASSIFICATION OF NEURONS

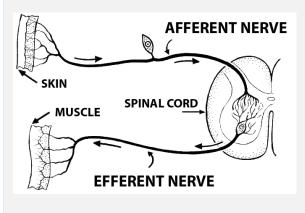

#### STRUCTURE

**Bipolar -** distinct axon and dendrite separated from each other by a cell body

**Multipolar -** single axon, multiple dendritic fibres. All somatic motor neurons are multipolar.

**Pseudo unipolar -** fake unipolar, found in human body

Axon comes out of cell body and splits in 2, no dendrites



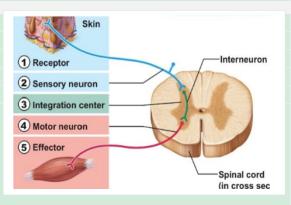

#### **FUNCTION**

Afferent (sensory) - take nerve impulses from receptors to CNS Occur at the end of dendrites

**Efferent (motor)**- take nerve impulses from CNS to effector structures

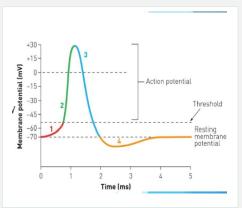
Interneurons/ connector neurons- receive and send messages from adjacent neurons




## REFLEX ARC

The rapid, autonomic response to a change in the internal or external environment

#### Properties:


-stimulus is required -involuntary -rapid and small no of neurons -stereotyped and same way each time

- 1. Receptor detecting the change: end of a sensory neuron
- 2. Sensory neuron carries impulse from receptor to the CNS
- 3. Synapse passed to motor neuron or interneuron: only one synapse
- 4. Motor neuron carries nerve impulses to an effector
- 5. Effector receives impulses and carries out response



#### **ACTION POTENTIAL**

- Stimulus is applied membrane becomes permeable and sodium moves into the cell causing depolarisation: an all or none response occurs if decrease is more than a 15mV (threshold) so more sodium ions are allowed into the cell
- 2. Depolarisation when action potential is created from sodium ions allowed into the cell
- Repolarisation ion channels on the inside of the membrane allow potassium ions out: this restores the electrical balance
- 4. Hyperpolarisation returning to the resting membrane potential there is more potassium on the outside than



sodium on inside: causes membrane potential to drop and then returns to normal state

5. 1-4 steps refractory period – the brief time during and after-action potential when the neuron cannot be stimulated

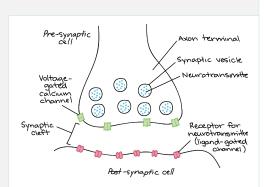
#### MYELINATED FIBRES

Faster process

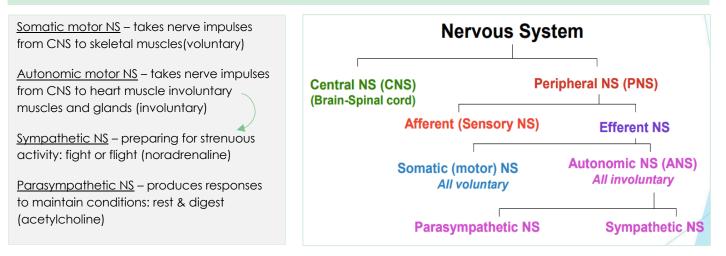
Action potential generated between each node of Ranvier

Exchanges of ions generated at each node of Ranvier (saltatory conduction)

#### UNMYELINATED FIBRES


#### Slower process

Action potential generated immediately adjacent to its original stimulus


Exchange of ions generated along entire length of axon

## SYNAPSES

- 1. Membrane depolarises the end of an axon, calcium gates will open, letting calcium ions enter the cell
- 2. Synaptic vesicle release neurotransmitters relay message between neurons
- 3. Neurotransmitters bind with receptors bind on the neuron (acetylcholine, dopamine, adrenaline)
- 4. Excitation or inhibition occurs depending on the neurotransmitter
  - Excitation sending message nerve impulse is generated when sodium enters the cell and depolarisation occurs
  - Inhibition nerve impulse is not sent because potassium moves out of cell: hyperpolarisation is reached



## **Peripheral Nervous System**

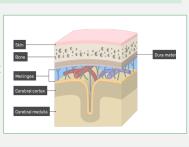


DIFFERENCES BETWEEN THE AUTONOMIC AND SOMATIC NERVOUS SYSTEM

| Effectors                       | Heart muscle, involuntary muscle, glands | Skeletal muscles                 |
|---------------------------------|------------------------------------------|----------------------------------|
| General function                | Homeostasis                              | Response to external environment |
| Efferent pathways               | Two nerve fibres                         | One nerve fibre                  |
| Neurotransmitter at<br>effector | Acetylcholine or<br>noradrenaline        | Acetylcholine                    |
| Control                         | Involuntary                              | Voluntary                        |
| Nerves to target organ          | Sympathetic and<br>parasympathetic       | One set                          |
| Effect on target organ          | Excitation or inhibition                 | Always excitation                |

#### EFFECTS OF THE SYMPATHETIC AND PARASYMPATHETIC NERVOUS SYSTEM

|                                                                                                             | SYMPATHETIC                                                                                                 | PARASYMPATHETIC                                                                        |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Heart                                                                                                       | Increase heart rate and contraction                                                                         | Decreases heart rate and contraction                                                   |
| Lungs                                                                                                       | Dilates bronchioles<br>allowing more air                                                                    | Constricts bronchioles                                                                 |
| Stomach/intestines                                                                                          | Decreases peristalsis                                                                                       | Increases peristalsis                                                                  |
| Liver                                                                                                       | Increase breakdown of<br>glycogen and release of<br>glucose                                                 | Increases uptake of<br>glucose and synthesis of<br>glycogen                            |
| Iris of the eye                                                                                             | Dilates for sight                                                                                           | Constricts pupil                                                                       |
| Sweat glands                                                                                                | Increases sweat                                                                                             | No effect                                                                              |
| Salivary glands                                                                                             | Decreases saliva                                                                                            | Increases saliva                                                                       |
| Blood vessels of:<br>- skin<br>- skeletal muscle<br>- internal organs<br>Urinary bladder<br>Adrenal medulla | Constricts vessels<br>Dilates vessels<br>Constricts vessels<br>Relaxes muscles of wall<br>Hormone secretion | Little effect<br>No effect<br>Little effect<br>Constricts muscles of wall<br>No effect |


## **Central Nervous System**

#### PROTECTION OF THE CNS

- 1. <u>Bone</u> brain protected by cranium and the spinal cord is protected by vertebral canal
- 2. <u>Meninges</u> tough, fibrous protective layer covering the entire CNS
- 3. <u>Cerebrospinal fluid</u> acts as a shock absorber to prevent blows

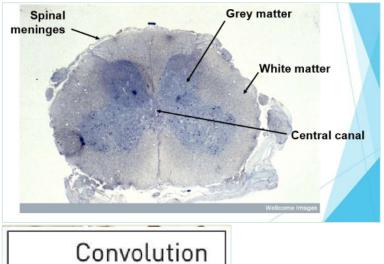
#### THE MENINGE

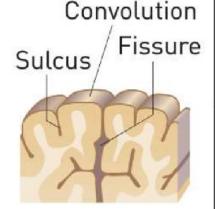
- <u>Dura mater</u>: outer layer
- <u>Arachnoid mater</u>: middle layers
- <u>Pia mater</u>: inner layers



| AREA OF<br>THE BRAIN | PART OF THE BRAIN | STRUCTURE                                              | FUNCTION                                                                                     |
|----------------------|-------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Forebrain            | Cerebrum          | Largest part<br>Surface is folded into<br>convolutions | Controls learning, reasoning<br>& memory<br>Voluntary & involuntary<br>activities            |
|                      | Hypothalamus      | Deep inside the middle of<br>the brain                 | Maintains homeostasis<br>Controls autonomic NS<br>Releases releasing &<br>inhibiting factors |
| Hindbrain            | Medulla oblongata | Joining the brain to the spinal cord                   | Controls basal functions<br>Regulates heart rate and<br>blood pressure                       |
|                      | Cerebellum        | Underneath the rear part of the brain                  | Controls muscular<br>movement and posture<br>Coordinates fine muscle<br>contraction          |

#### CEREBRUM


- 1. Frontal voluntary control
- 2. Temporal smell and hearing
- 3. Occipital visual areas
- 4. Parietal sensory information
- Outer surface cerebral cortex Contains grey matter and is folded to increase surface area
- Inner basal ganglia Contains grey matter


Grooves in the brain Longitudinal – separates cerebrum in halves Corpus callosum – joins halves together

#### **IRACTS**

Bundles of nerves

- Connect areas together
- Carry impulses between hemispheres
- Connect cortex to brain or spinal cord





#### PARKINSONS AND ALZHEIMER'S DISEASE

| PARKINSON'S<br>DISEASE | Reduce<br>neurotransmitter<br>dopamine,<br>resulting in<br>death of nerve<br>cells                                                   | Slow physical<br>movement<br>and<br>spasmodic<br>muscle<br>tremors | <ul> <li>No cure</li> <li>Increasing<br/>body's<br/>dopamine<br/>levels</li> <li>Cell<br/>replacement<br/>of dying<br/>neurons with<br/>healthy ones</li> </ul> | <ul> <li>Impaired<br/>hearing<br/>and vision</li> <li>Short term<br/>memory<br/>loss</li> <li>Slow</li> </ul> | <ul> <li>Lower<br/>alcohol<br/>consumption</li> <li>Physical<br/>stimulation</li> <li>Healthy diet</li> </ul> |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ALZHEIMER'S<br>DISEASE | Loss of neurons<br>due to<br>abnormal<br>accumulations<br>of amyloid<br>plaques which<br>interferes with<br>synaptic<br>transmission | Memory loss,<br>paranoia,<br>moodiness<br>and<br>disorientation    | <ul> <li>No cure</li> <li>cholinesterase<br/>inhibitors</li> <li>Cell<br/>replacement<br/>of dying<br/>neurons with<br/>healthy ones</li> </ul>                 | reaction<br>times<br>- Loss of fine<br>motor skills                                                           |                                                                                                               |

## COMPARISON OF NERVOUS SYSTEM AND ENDOCRINE SYSTEM

| BASIS FOR<br>COMPARISON   |                                                                      |                                                                                                            |
|---------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| The rate of<br>response   | Quick response, by the action potentials and neurotransmitters.      | Responds slowly by secreting<br>hormones, traveling through the<br>circulatory system to the target tissue |
| Kind of response          | Localised response.                                                  | The response is spread widely.                                                                             |
| Duration                  | Short lasting effects                                                | Long lasting effects                                                                                       |
| Transmission of<br>signal | Neurotransmitters along neurons<br>transmit electrochemical signals. | Hormones are chemical signals<br>through the blood stream                                                  |
| Transmission              | Neurons                                                              | Bloodstream                                                                                                |

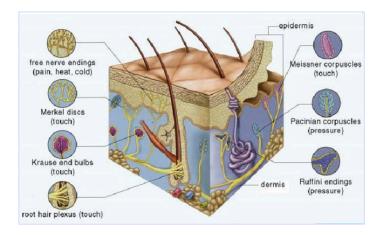
## HOMEOSTASIS

#### Maintaining a constant internal environment

Needs:

- be at a particular temperature
- constant supply of oxygen
- constant removal of wastes

Transduction: the translation of an arriving stimulus into an action potential by a sensory neuron

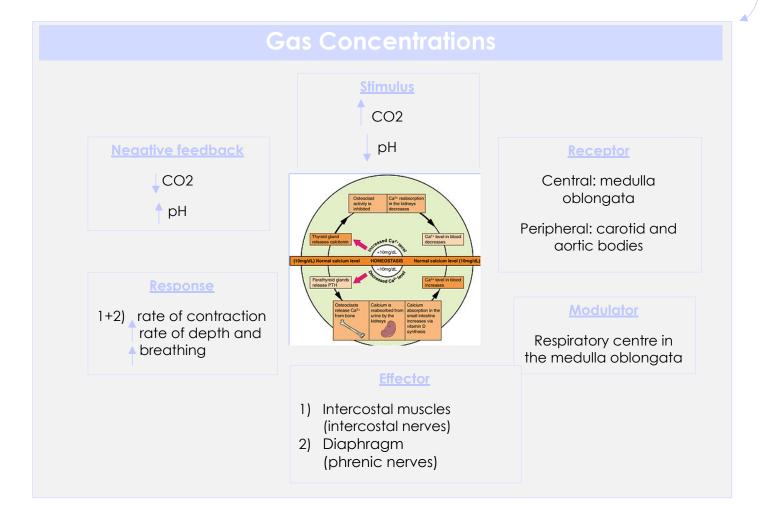

Nociceptors – skin and mucous membranes

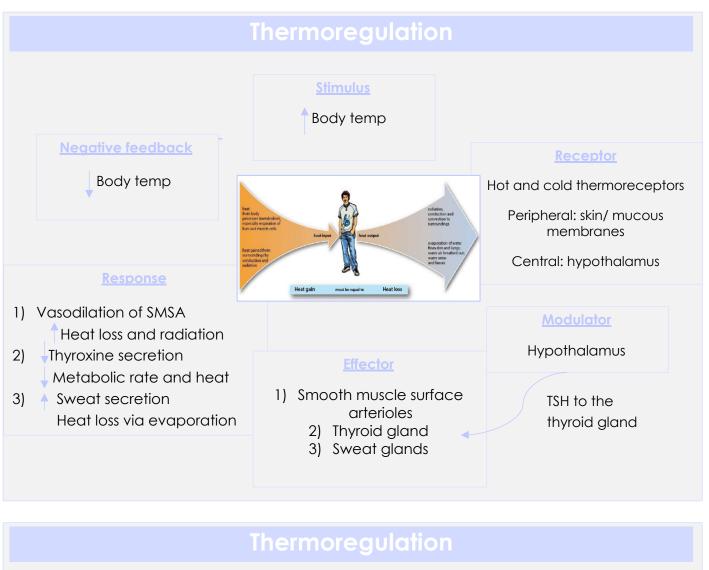
Osmoreceptors – hypothalamus

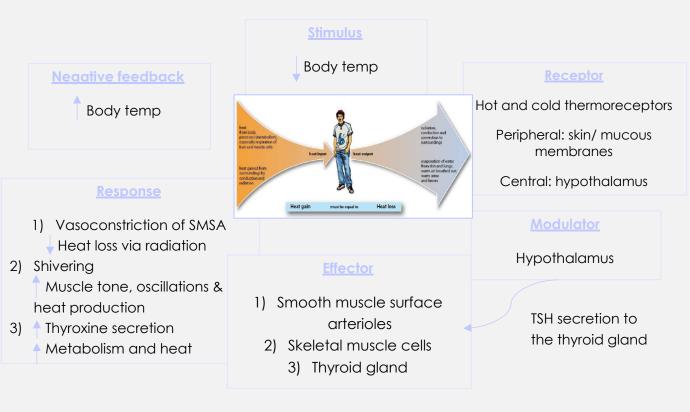
Thermoreceptors – peripheral in skin and mucous membranes, central in hypothalamus

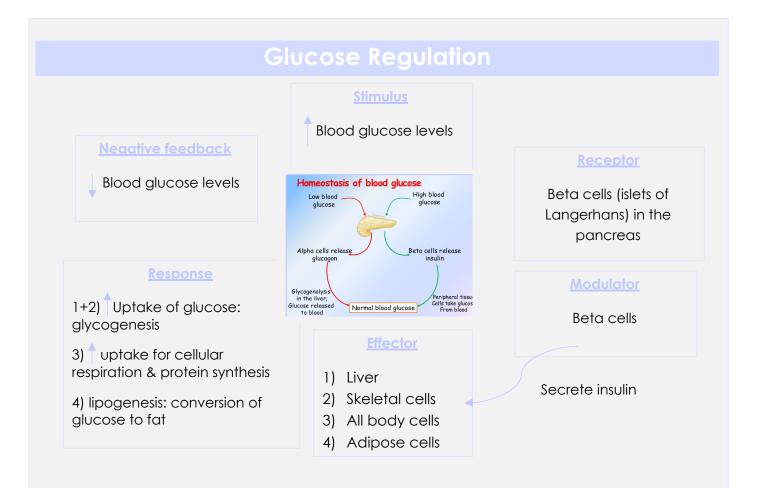
Mechanoreceptors – skin

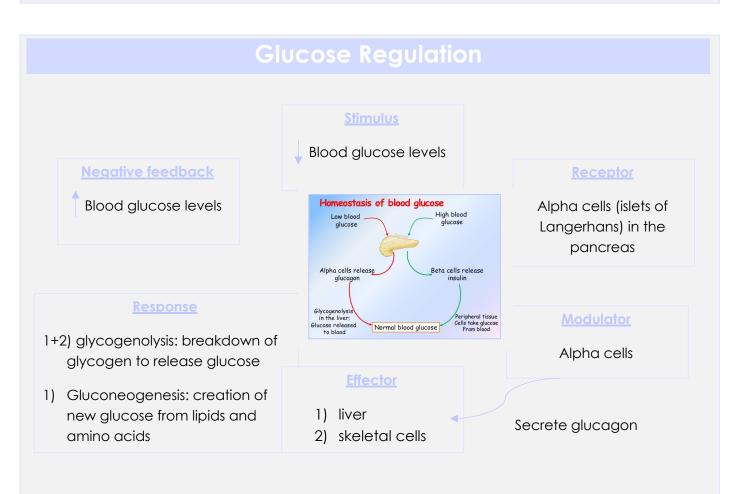
Chemoreceptors – peripheral in carotid and aortic bodies, central in medulla oblongata



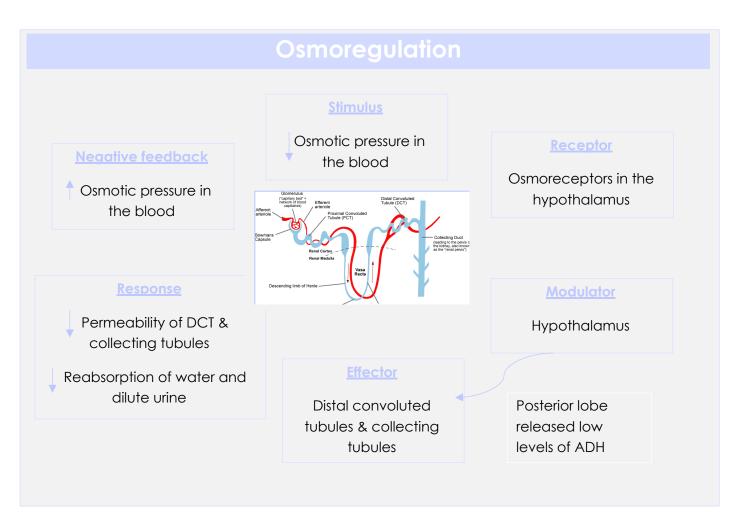


#### HYPERVENTILATION


Results in the increase in O2 and decrease of CO2 with rapid, deep breathing


- When there is less CO2 in the blood, the vessels connected to the brain will narrow resulting in light headedness


- Can be voluntary or because of stress – emotional and physical














## **The Nephron**

## **URINE FORMATION**

1. <u>Glomerular filtration</u> High blood pressure forces water and small molecules out into the capsule

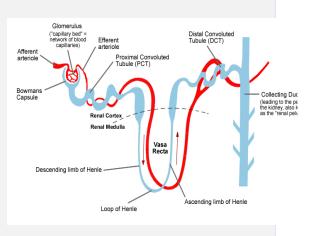
#### 2. <u>Reabsorption</u>

Filtrate goes through PCT, loop of Henle, DCT and collecting duct Loop of Henle and PCT is where osmosis of substances occurs back into the peritubular capillaries DCT is where the active reabsorption of water by ADH

3. <u>Secretion</u>

Some materials needed to be removed are secreted from capillaries into the tubules




Amine hormone

Controls reabsorption of water

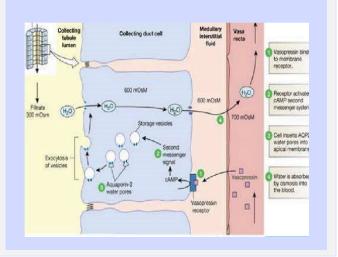
Decreases osmotic pressure

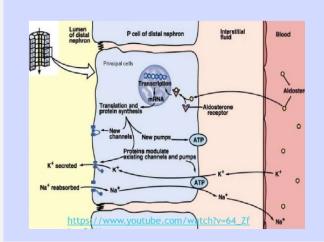
Increased ADH – increased permeability and water moves into capillaries = high concentration of urine (less urine)

Released from the posterior pituitary



## **ALDOSTERONE**


Steroid


Controls reabsorption of sodium

Decreases osmotic pressure

Increased aldosterone – increases reabsorption of sodium in the blood as well as obligatory reabsorption of water

#### Released from the adrenal cortex





## **IMMUNE SYSTEM**

## **NON- SPECIFIC DEFENSES**

#### EXTERNAL DEFENSE

| BODY'S EXTERNAL DEFENCE AGAINST PATHOGENS |                  |                                                                   |                                                                                                                                                                                                                 |  |  |
|-------------------------------------------|------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                           | LOCATION         | SPECIFIC FEATURE                                                  | ACTION                                                                                                                                                                                                          |  |  |
| SKIN                                      | SKIN             | water-proof barrier                                               | <ul> <li>prevents pathogens         penetrating and entering the             internal system         bacterial colonies on             surface make entrance of             pathogens difficult     </li> </ul> |  |  |
|                                           | SEBUM            | oily secretion that is slightly acidic                            | <ul> <li>acidity makes environment<br/>hostile to may pathogens</li> </ul>                                                                                                                                      |  |  |
|                                           | SWEAT            | secretion of water, salts,<br>wastes and fatty acids from<br>skin | - salt and fatty acid prevents growth of pathogens                                                                                                                                                              |  |  |
| DIGESTIVE<br>TRACTS                       | MUCOUS MEMBRANES | secretes mucus onto<br>inner lining of digestive<br>tract         | - prevents bacteria entering the organs of the body                                                                                                                                                             |  |  |
| URINOGENITAL                              | ACID SECRETIONS  | acidity kills bacteria and reduces their growth                   | - creates a hostile environment for<br>bacteria's                                                                                                                                                               |  |  |
| TRACTS                                    | URETHRA HAS HCL  | prevents build-up of<br>pathogens                                 | - creates a flushing or cleansing action that eliminates bacteria                                                                                                                                               |  |  |
| THE MOUTH                                 | SALIVA           | contains lysozyme, an enzyme that kills bacteria                  | - creates a flushing or cleansing action that eliminates bacteria                                                                                                                                               |  |  |
|                                           | MUCUS            | secretes mucus into nasal<br>cavity                               | - traps pathogens                                                                                                                                                                                               |  |  |
| THE NOSE                                  | CILIA AND HAIRS  | tiny hairs that trap<br>micro-organisms                           | - move pathogens out of respiratory<br>tract with wave-like<br>contractions                                                                                                                                     |  |  |
| THE EAR                                   | CERUMEN          | slightly acidic and contains lysozyme                             | - breaks down bacteria and prevents<br>entry                                                                                                                                                                    |  |  |
| THE EYE                                   | FLUSHING ACTION  | contains lysozyme                                                 | - tears prevent bacteria from<br>growing                                                                                                                                                                        |  |  |

## <u> The Inflammatory Response</u>

A generalised response to all pathogens in response to all tissue infections or injuries

#### Purpose and Signs

#### Purpose:

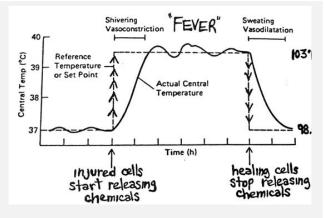
- To reduce the spread of pathogens
- Destroy and prevent entry of more pathogens
- Repair or remove damaged tissue

Signs:

- Redness: increased blood flow
- Swelling: fluid seeping out of cells
- Heat: blood flows at 37°
- Pain: mechanical break

## Response

- 1. Break or tear in skin causing mast cells to release histamine and heparin
- Histamine increases blood flow and permeability of capillaries to help fluid filter in blood Heparin prevents clotting anywhere other than the infected area
- 3. Histamine releases phagocytes (macrophages) to digest micro-organisms and cell debris
- 4. Pain receptors are stimulated (signs of inflammation occur)
- 5. Phagocytes (macrophages) die and form yellow substance called pus
- 6. Mitosis occurs to produce more cells and repair old ones


#### Wound platelets 3 Mast cell Neutrophil Signalling path to injury site Cytokines signalling path to injury site Signalling Cytokines Signalling Cytokines Signalling Description Signalling Sign

Macrophage

## The Fever

Occurs during infection to increase body heat in order to stop and kill bacteria from growing

- Feelings cold because the body resets the body temperature to 39.5°
   Vasoconstriction of capillaries and shivering of skeletal muscle cells occurs, so the body temperature goes up
- Fever breaks body temperature goes back to original 37°
   Sweat glands produce sweat and bacteria has been destroyed
- 3. Body temperature goes back to normal

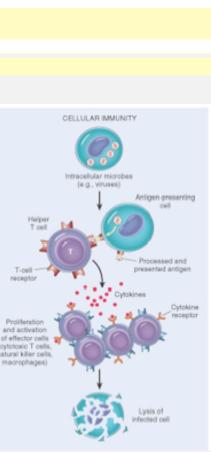


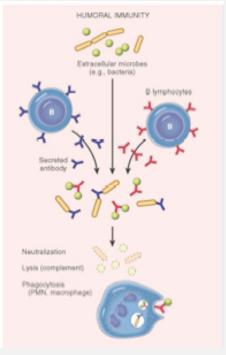
## **SPECIFIC DEFENSES**

## Humeral/ Anti-Body Mediated Response

#### Response

- 1. Antigen present in the blood or lymph
- 2. Bacteria is engulfed by macrophage (phagocytosis)
- 3. Lysosome is within vesicle, joins with bacteria
- 4. Enzymes will break down bacteria and broken into tiny pieces
- 5. Cell debris, exocytosis
- 6. (presents antigen to surface)
- 7. Helper T-cell attaches and reads antigen: Antigen-antibody complex
- 8. Releases and sends cytokines to activate B cells
- 9. B cells become sensitized
- 10. Specific B-cells enlarge and divide- creating clone
- 11. Creates memory B-cells and Plasma cells Plasma cells create antibodies which bind to antigens Memory cells remember antigen for next time


#### Memory cells:


- Inactivate substances (make a soluble substance insoluble)
- Prevent virus from entering cells
- Coat bacteria for macrophages to come and engulf
- Agglutination (all clump together)

## <u>Cell Mediated Response</u>

#### Response

- 1. Pathogen/antigen is present in a cell
- 2. Bacteria is engulfed by macrophage (phagocytosis)
- 3. Lysosome is within vesicle, joins with bacteria
- 4. Enzymes will break down bacteria and broken into tiny pieces
- 5. Cell debris, exocytosis
- 6. (presents antigen to surface)
- 7. Helper T-cell attaches and reads antigen: Antigen-antibody complex
- 8. Releases and sends cytokines to activate T-cells
- 9. T-cells become sensitized
- 10. T-cells enlarge and divide to create clone
- 11. Creates memory cells, killer T-cells, Helper T-cells and suppressor T-cells
- *Killer T-cells*: attaches to antigens and destroy them (lysis of a pathogen)
- Helper T-cells: secrete substance to attract more macrophages/lymphocytes
- Memory T-cells: remember antigen for next time
- Suppressor T-cells: lowers immune response once
- pathogens are killed





## PHAGOCYTES

bacterium

phagocytosis

receptors

lysosome

phagosome

phagolysosomes

soluble debris

exocytosis

Cells that undergo phagocytosis (cell eating)

- Macrophages
- **B-cells**
- Dendritic cells

Protect against:

- Foreign organisms
- Alien chemicals
- Cancerous/ abnormal cells

- 1. Phagocyte is attracted to surface of bacteria
- 2. Vacuole forms inside of phagocytic cell and lysosome binds to vacuole
- 3. Digestive system breaks down microbe
- 4. Soluble debris leave by exocytosis

## ANTIBIOTICS

- Cell wall synthesis inhibiters: antibiotics will stop cell wall from producing
- Interfering protein synthesis
- Cell membrane inhibiters: destruct the cell membrane
- Effect on nucleic acids
- Competitive inhibitors: completely inhibit reactions on the metabolic pathway

Inhibits the growth Kills the organism Changes structure of cell wall Disrupts protein synthesis Relapses can occur

# HOW ANTIBIOTIC RESISTANCE HAPPENS



Lots of germs and some are drug resistant

Antibiotics kill the bacteria causing the illnes as well as the good bacteria protecting the body from infection





#### Some bacteria give their drug resistance to

other bacteria

- Resistant bacteri

- Dead bacterium

The drug resistant

bacteria is now able

to grow and take over

## **IMMUNITY**

The resistance to infection by invading micro-organisms. The body's ability to respond quickly to pathogens may be natural (without human intervention) or artificial (given an antibody or antigen).

|                                                                          | NATURAL IMMUNITY<br>(occurs without human intervention)                                                                                                                                                                                                                                                                      | ARTIFICIAL IMMUNITY<br>(results from people being given either an<br>antigen or antibody)                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PASSIVE<br>(given<br>antibodies<br>produced<br>by<br>someone<br>else)    | <ul> <li>person is given antibodies from someone else</li> <li>immune system NOT activated</li> <li>NO memory cells formed (= NO immunity acquired)</li> <li>protection immediate but only temporary</li> <li>(Not long lasting ~ 2 weeks)</li> <li>Eg: mothers breast milk/ placenta passes antibodies to foetus</li> </ul> | <ul> <li>person is given antibodies<br/>from someone else</li> <li>immune system NOT<br/>activated</li> <li>NO memory cells formed (=<br/>NO immunity acquired)</li> <li>protection immediate but<br/>only temporary</li> <li>(NOT long lasting)</li> <li>Eg: influenza/tetanus/rabies<br/>antibodies injected into<br/>bloodstream to combat an<br/>infection</li> </ul> |
| ACTIVE<br>(exposed to<br>foreign<br>antigen,<br>makes own<br>antibodies) | <ul> <li>Immune system IS activated</li> <li>Body makes own antibodies in<br/>response to foreign antigen</li> <li>memory cells ARE created</li> <li>Long lasting immunity</li> <li>Eg: chicken pox</li> </ul>                                                                                                               | <ul> <li>Person is given antigens</li> <li>Body makes own antibodies in<br/>response to foreign antigen</li> <li>memory cells ARE created</li> <li>Long lasting immunity</li> <li>Eg: antigens given in<br/>vaccination: living attenuated<br/>MMR injected into<br/>bloodstream</li> </ul>                                                                               |

#### Vaccinations

The process where a person is made immune or resistant to an infectious disease by artificial administration of antigens of pathogenic organism, causing individual to produce antibodies without suffering the disease.

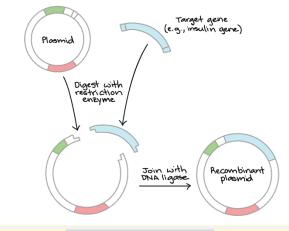
#### Types of vaccines

- 1. Attenuated: contains living organisms with reduced ability for disease
- 2. Dead micro-organisms: not long lasting but provide immune response
- 3. Toxoids: toxins produced by bacteria are inactivated and then injected
- 4. Sub-unit: fragment of organism used to provoke immune response

#### <u>Risks with vaccinations</u>

- Allergic reaction: vaccine or medium it is cultured in an egg or yeast
- Live-tissue cultures: risk of cross-species disease introduction
- Chemicals used: preservatives in manufactures or vaccines like aluminium or phosphate

## **BACTERIA VS VIRUSES**


|                       | BACTERIA                                                                                                                                                                                    | VIRUSES                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| LIVING/NON LIVING     | Living organisms, live independently                                                                                                                                                        | Non-living organisms as they cannot reproduce by themselves (need host)                                                           |
| SIZE                  | - Single celled<br>- 200 to 5000nm                                                                                                                                                          | - 20 to 40nm in diametre -<br>Not seen under normal light<br>microscope                                                           |
| STRUCTURE             | <ul> <li>Has a cell wall made of<br/>carbohydrate-protein<br/>(peptidoglycan)</li> <li>Contains slime layer</li> <li>Granular due to ribosomes</li> <li>No nucleus or organelles</li> </ul> | <ul> <li>True protein coat over nucleic acid</li> <li>Lipid-protein envelope - No<br/>cell wall, nucleus or organelles</li> </ul> |
| RNA OR DNA            | <ul> <li>Contains both</li> <li>Forms a tangle inside the cell called plasmid</li> </ul>                                                                                                    | Has either DNA or RNA not both                                                                                                    |
| DISEASES              | - Syphilis<br>- Salmonella<br>- Bubonic Plague<br>- Chlamydia<br>- Tuberculosis                                                                                                             | <ul> <li>Influenza</li> <li>HIV/AIDS</li> <li>Measles</li> <li>Ebola</li> <li>Chickenpox</li> </ul>                               |
| TRANSMISSION          | <ul> <li>Touching infected surfaces</li> <li>Direct contact</li> <li>In water droplets</li> </ul>                                                                                           | <ul> <li>Person to person via body<br/>fluid</li> <li>Environment to person</li> <li>Animal to person</li> </ul>                  |
| REPRODUCTION<br>TYPES | Binary Fission<br>- Cocci (spherical)<br>- Bacilli (Rod shaped)<br>- Spirilla (twisted cells)<br>- Vibrio (tear shaped)                                                                     | Host cells<br>N/A                                                                                                                 |

## **RECOMBINANT DNA**

Genome that has been altered by the transfer of a gene or genes from another organism

#### **Process**

- 1. HBsAg (viral surface antigen) gene is isolated
- Plasmid DNA is extracted from E. coli and cut with restriction enzymes (Eco RI)
- 3. This plasmid will serve as the vector
- 4. HBsAg inserted into bacterial plasmid vector forming recombinant DNA
- 5. This recombinant DNA is introduced into yeast cell
- 6. Recombinant yeast cell multiples in the fermentation tank and produces HBsAg
- 7. Yeast cells are ruptured to free HBsAg
- 8. HBsAg purified
- HBsAg mixed with preserving agents and other ingredients and bottled ready for vaccinations



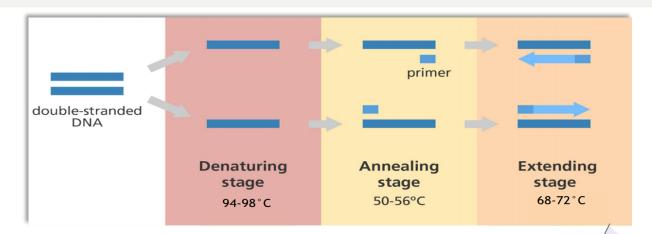
#### Ethical considerations

Economical – potential for ecological harm on environment

Social – what is sustainability and how can it be measured?

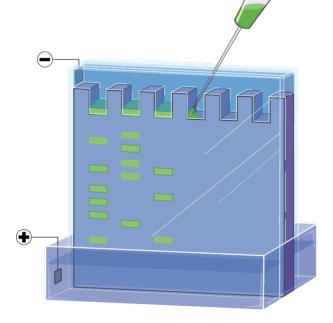
Religious – playing god with artificial termination of pregnancy

Safety – how to protect researchers working with it from infection


# BIOTECHNOLOGY

The application of science and technology to living organisms, as well as parts, products and models thereof, to alter living or non-living materials for human purposes.

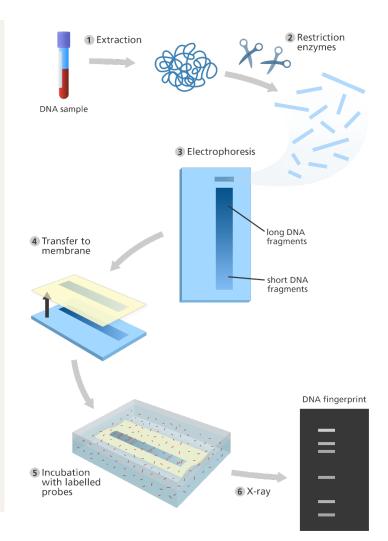
Polymerase chain reaction (PCR)


Series of repeated cycles to artificially multiply DNA

- 1. Denaturing stage 94°
- Heating of double stranded DNA
- Disrupts hydrogen bonds between complementary bases
- Separation of the strands
- 2. Annealing stage 55°
- Lowered temperature
- Primer is a small single strand of DNA
- Binds complementary base sequences
- Starts DNA replication process
- 3. Extending stage 72°
- DNA polymerase can't withstand repeated cycles and undergoing the denaturing stage, therefore Taq polymerase is added
- Taq polymerase binds to the primer
- Taq polymerase synthesizes complementary DNA strand



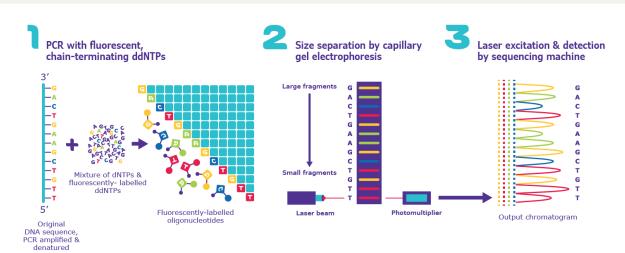
#### Gel Electrophoresis


- An electric current is passed through an agar gel to separate fragments of different sizes of DNA (negatively charged)
- 2. The negatively charged DNA moves towards the positive electrode (smaller fragments travel further, and larger fragments travel less)
- Comparisons are made by different individuals (only if same restriction enzyme was used)
- 4. Banding pattern formed during gel electrophoresis forms a DNA profile for that individual called a genetic fingerprint



#### **DNA profiling**

Used to identify individuals based on the banding pattern of fragments of DNA


- 1. Separate white and red blood cells with a centrifuge
- 2. Extract DNA from nucleus of the white blood cells done by heating cells
- 3. Cut DNA stand into fragments using a restriction enzyme
- 4. Place fragments into one end of a bed of agarose gel with electrodes in it.
- 5. Use an electric current to sort the DNA segments by length called gel electrophoresis when negatively charged molecules move through the gel with electricity. The shorter strands will move farther away from their location whereas longer strands will move slower and stay closer to original location.
- Use a sheet of nitrocellulose to blot the DNA, to create an autoradiograph – the DNA profile.



#### **DNA sequencing**

Determining the precise order of nucleotides in a sample of DNA

- 1. DNA is denatured by heating to a high temperature (96°) form single stranded DNA
- 2. Primer is attached to DNA template strand and is equally distributed into 4 tubes. DNA polymerase is added
- 3. Different DNA nucleotides are placed as well as dideoxy nucleotides (minus hydroxyl)
- 4. Process is repeated, the dideoxy inserted at different points, forming different lengths of DNA strands
- 5. Gel electrophoresis is used for fragments of different lengths. Shorter travel the furthest
- 6. Sequence can be determined by going from longest strand, (3' end) to shortest strand (5' end).

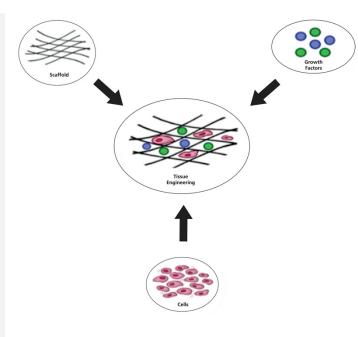


#### **Gene Therapy**

Therapy which aims to replace faulty genes with healthy ones (not treat symptoms, cure disease)

#### <u>In-vivo</u>

- 1. Gene inserted into a viral/non-viral vector
- 2. Vector is injected into a patient
- 3. Vector unloads genetic information into defective cells


#### <u>Ex-vivo gene therapy</u>

- 1. Collection of cells from the patient removed from the body
- 2. Healthy gene (replacement gene) for beta cells packaged within a virus that acts as a vector
- 3. Virus is inserted into stem cells
- 4. Genetically modified cells are multiplied in the laboratory
- 5. Corrected cells administered in patient
- 6. Cells continue to multiply to produce insulin

#### **Tissue Engineering**

The use of a combination of cells and factors to improve and replace functions of old cells, and repair damaged tissues and organs.

- Disease free cells are induced to grow on a scaffold
   Scaffold – provides nutrients and are highly porous
- 2. Cells manufacture own matrix structure on the scaffold
- 3. Scaffold is implanted into the patient where new tissue is required
- 4. Scaffold degenerates leaving the new tissue

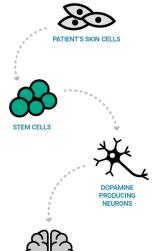


#### Cell Replacement Therapy

Where cellular material is injected into a patient

Alzheimer's Disease – forms of dementia and damaged nervous tissue

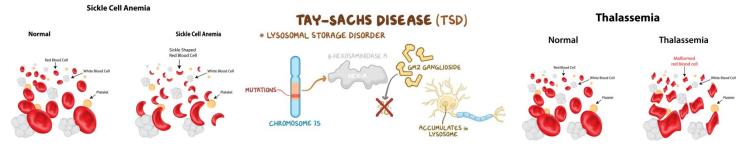
There are no stem cell treatments that are approved for this disease


- Neural stem cell transplants have been given to mice with diseases similar with positive feedback – the progress

Parkinson's Disease – shaking, slow movement and muscle stiffness

Replacing people's dopamine levels with sympathetic relief

- Using pluripotent stem cells to induce and differentiate stem cells to create dopaminergic neurons


#### PERSONALIZED CELL THERAPY





## <u>Genetic diseases</u>

| Sickle Cell<br>Anaemia<br>A recessive<br>gene<br>mutation<br>which is fatal                                  | Black Africans                                                                          | -Mutation in<br>chromosome<br>11 that causes<br>production of<br>haemoglobin<br>-Erythrocytes<br>fold over into<br>sickle shape<br>and stick to<br>each other<br>-Not enough<br>healthy RBC's | -Anaemia –<br>body can't<br>get enough<br>oxygen<br>-Pain –<br>blocked veins                                                                                             | Recessive<br>autosomal<br>allele<br>Areas where<br>malaria is<br>prevalent,<br>tropical areas | -<br>Protection<br>against<br>malaria                               |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <b>Tay-Sachs<br/>Disease</b><br>Hereditary<br>disorder of<br>lipid<br>metabolism                             | Eastern<br>European Jews<br>(Ashkenazi<br>Jewish<br>Population)                         | -Deficiency of<br>enzyme<br>hexosaminidas<br>e A<br>-Accumulation<br>of fatty<br>substance in NS                                                                                              | -Muscular<br>stiffness/ no<br>strength –<br>signals not to<br>motor<br>neurons<br>-<br>Accumulatio<br>n of lipid in<br>retinal<br>ganglion cells<br>– red spot on<br>eye | Recessive<br>autosomal<br>allele<br>Overcrowded<br>, isolated<br>conditions                   | -<br>Sometime<br>s<br>resistance<br>against TB<br>-Little<br>effect |
| Thalassemia<br>(alpha and<br>beta)<br>Inherited<br>blood<br>disorder, less<br>haemoglobi<br>n than<br>normal | Mediterranean's<br>, African<br>Americans,<br>Southeast<br>Asians, Middle<br>Easterners | -Changes in<br>HBB gene<br>(beta) and<br>deletion of<br>HBA1 and HBA2<br>genes (alpha)<br>-Mutations in<br>the DNA of cells<br>that make<br>haemoglobin<br>-Fewer<br>haemoglobin /<br>RBC's   | -Anaemia/<br>fatigue – lack<br>of oxygen<br>being<br>transported<br>to tissues and<br>organs<br>-Dark urine -<br>bilirubin from<br>broken down<br>red blood<br>cells     | Recessive<br>autosomal<br>allele<br>Passed from<br>parents to<br>children –<br>ancestry       | -<br>Resistance<br>to malaria                                       |



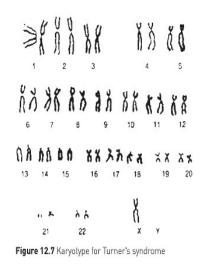
# **MUTATIONS**

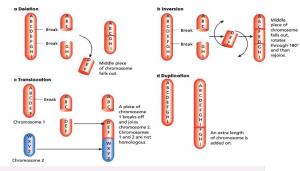
#### Are variations in offspring that occur suddenly and by change

Caused by:

- Errors in DNA replication
- During cell division
- Damage caused by mutagens

#### 1ST WAY TO CLASSIFY MUTATIONS:


#### <u>Gene Mutations</u>


Changes in a single gene so that the traits normally produced are changed or destroyed during DNA replication. The simplest form of mutation is point mutation in which only a single nucleotide is affected.

- Substitution: a base is substituted with an incorrect base
- Insertion: a base is added causing a frame shift
- Deletion: one nitrogen base is deleted causing a frame shift

Cystic Fibrosis - caused by gene mutation on chromosome 7 coding for protein that regulates passage of chloride ions across cell membrane,

Muscular dystrophy – mutation in the mother inherited by sons.





#### **Chromosomal Mutations**

Involves all or part of chromosomes are affected and occurs during cell division.

- Deletion double strand breaks cause sections of chromosomes to drop and two ends re-join to make shorter chromosomes
- 2. Inversions chromosome breaks and flips 180° before it re-joins, reversing normal sequence
- 3. Translocation a section of the chromosome breaks off and reattaches with another
- 4. Duplication occurs when an extra copy of a DNA sequence is made and inserted into the chromosome
- 5. Non-disjunction during meiosis, chromosome pairs don't divide evenly, and daughter cell has more and the other has less

Trisomy is the addition of an extra chromosome into a daughter cell which then becomes a zygote.

- Down syndrome (trisomy 21) occurs when a when a child has an extra chromosome 21. Many of the symptoms of down syndrome may occur when partial trisomy occurs
- Patau Syndrome when an extra chromosome 13 produces individuals with mental retardation, small head, cleft lips and extra digit on each hand.

Monosomy is when an individual is missing a chromosome, only having one copy instead of two. In some cases this can result in a miscarriage.

- Turner's Syndrome - monosomy X, these females are short in stature, lack secondary sex characteristics and are infertile

#### <u>Mutager</u>

- Resemble proteins and be incorporated into DNA
- Can trigger DNA replication errors
- Can cause DNA breakages/ lengthening
- Can block DNA replication and damage DNA structure
- Can chemically react and modify DNA
- Cells with damaged DNA multiply

Physical mutations:

- Distortions of double helix
- X rays' gene and chromosome aberrations
- UV light causes structural distortion

#### Chemical mutations:

- Substitution of one base or another
- Blocks DNA repairing
- Disrupts the packing of DNA

#### 2ND WAY TO CLASSIFY MUTATIONS:

#### **Germline Mutations**

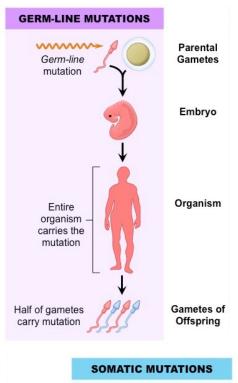
Mutation of the gametes

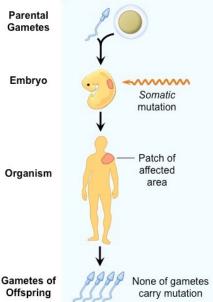
The individual in whom the mutation occurs is not affected though the gametes have changed DNA

The mutation is passed onto the daughter cells and often the zygote fails to develop.

e.g. phenylketonuria (PKU)

#### Somatic Mutations


Mutation of the body cells


Results in the individual being affected by the mutation.

Somatic cells divide and pass mutation onto the daughter cells and once this individual dies the mutation is lost

Cannot be passed onto offspring because they don't affect the reproductive cells.

e.g. cancer





#### GLOSSARY

<u>Species</u> – a group of individuals that share characteristics and can interbreed under natural conditions for fertile offspring

Alleles – alternative forms of a gene

<u>Population</u> – groups of organisms of the same species living together in the same place at the same time

<u>Geneticists</u> – characteristics of the population are studied and not those of the individuals in the population

Gene pool – sum of all the alleles in a given population

Allele irequencies – how often each allele of a gene occurs in the gene pool

Mutagens – agents that are known to increase the rate pf mutations

# **GENE POOLS**

A sum of all the alleles in a population. Populations reflecting the frequency of alleles of a particular gene and are used to compare populations at different times and locations.

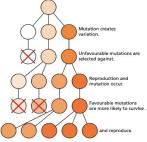
Changes are caused by:

- Mutations
- Different selection pressures
- Random genetic drift or founders' effect
- Changes in gene flow between adjoining groups

#### <u>Evolution</u>

The gradual change in a species characteristic in a long period of time

- Random assortment of chromosomes during meiosis
- Crossing over of chromatids during meiosis resulting in a changed sequence
- Non-disjunction
- Random fertilization there is an infinite number of possible combinations of alleles
- Mutations


#### Darwin's observations of evolution

- 1) Variation members of a species vary, and the variations are passed from one generation to the next
- 2) Birth rate all living organisms reproduce at a rate greater than food supply increases
- 3) Natures balance species number remained at a relatively constant rate

## Natural selection

Survival of the fittest when nature favours on a set of alleles at the expense of the others. The alleles best suited to their environment will survive and are passed on to next generations.

- 1. There is variation of characteristics within a species
- 2. More offspring are produced than can survive to maturity
- 3. Struggle for existence due to excessive birth rate and limited resources
- 4. Individuals with characteristics best suited to environment are advantaged survival of the fittest
- 5. Favourable characteristics are passed on to the next generation
- 6. Allele frequency for favourable characteristics increases in population



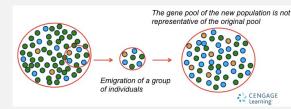
#### **Speciation**

Occurs when a single population becomes 2 separate populations that are unable to breed

- Variation within the population that share a common gene pool
- Isolation a barrier has formed, dividing the population into 2, no interbreeding occurs (have their own gene pools)
- Selection different selection pressures act on the 2 populations bringing a change in the gene frequencies
- Speciation over long period of time, 2 groups can no longer interbreed for fertile offspring and a new species has been formed

## Types of Evolution

#### <u>Random genetic drif</u>


In small populations there is random, nondirectional variation, known as genetic drift, which is purely a chance occurrence. It affects smaller and isolated populations where changes in allele frequencies are more noticeable and % change is more drastic

- Example: The Islands of Bentinck and Mornington were once connected to the mainland, but rising sea levels cut them off = isolated their populations
- Islander populations had allele frequencies HIGH in I<sup>B</sup> blood types, I<sup>A</sup> was absent.
- Mainland population had allele frequencies low in I<sup>B</sup> blood types, I<sup>A</sup> occurred in higher frequency

#### he founders effect

When a small group moves away from the original population, founding a new area. The migrant group is small and usually their alleles do not express all of the alleles of the original population.

Example: Amish people who have moved to remote areas, at least one of the 200 had the recessive allele for Ellis-Van Creveld syndrome, making it more common amongst this small population as they interbreed



#### **Bottleneck effect**

The extreme example of genetic drift when size of population reduces due to catastrophic events, adverse conditions and when the original gene pool cannot be recovered.

Example: when the cheetahs survived bottleneck effect

#### **Migration**

The gene flow, or movement of genes, from one population to another. Gene flow may occur if migrants breed with one another.

 Immigrants may add new alleles to one gene pool and immigrants may remove some alleles from another

Example: The increase in B blood group in Indigenous Australians due to migration of people from Asia and Europe

#### **Barriers to Gene Flow**

Populations are separated from each other and different selective environmental pressures exist, some traits are favourable over others. Separate gene pools develop and allele frequencies show differences between the separate populations

Geographical barriers - created by physical isolation and boundaries such as oceans, mountains, lake systems, deserts or ice

Sociocultural barriers - created by religion, culture, education, ethnicity and status which may prevent some people from breeding and cause inbreeding in other populations

# **EVIDENCE FOR EVOLUTION**

- Comparative biochemistry
- Comparative anatomy
- Fossils

#### COMPARATIVE BIOCHEMISTRY

#### Comparative Genomics

Comparing the genomes of organisms of different species Effective for:

- Studying evolutionary changes amongst organisms
- Identifying genes that are preserved in a species
- Identifying genes that give an organism traits

This is found by using bioinformatics to get comparison and can be used to create phylogenetic trees

#### **Protein Sequences**

Comparing the type and sequence of amino acids in a protein from different species to determine the degree of similarity.

Ubiquitous proteins – proteins that are in all species The more similarity between 2 molecules the more recently they have evolved from a common ancestor

e.g. cytochrome C (how many AA's out of 104 are similar)

#### Mitochondrial DNA

Circular molecules containing 37 genes

- There is higher rate of mutation in mtDNA
- Easier to access and locate
- Can track ancestry of many species
- Can track migration routes

Comparing mtDNA from one person to another (maternal inheritance) the more similar mtDNA, more related they are

#### **Bioinformatics**

Uses computers to describe the molecular components of living things

Annotation: when genes and biological features in a DNA sequence are analysed

Used for:

- Measuring changes in DNA to determine evolution
- Comparison of entire genomes
- Using various programs and databases to determine shared data

#### Comparing DNA

All living things use the same nucleotides to construct DNA so species more closely related will share portions of DNA.

Endogenous retrovirus – only endogenous if inserted into gamete – so inherited by next generation so offspring will have ERV in same location

DNA hybridization - when strands are heated to separate as cooling - the attraction make them bond back together

#### COMPARATIVE ANATOMY

#### **Embryology**

Embryos of different vertebrates show similar stages in embryonic development. Compares early stages of development in organisms to show common ancestors

#### Vestigial organs

Entirely functionless structures

- Had a purpose at one time in ancestry
- Reduced in size over time
- e.g. coccyx

#### Homologous & analogous structures

Homologous – divergent Similar in structure but differ in function. Same bones appear in different forms to use for different function Analogous – convergent Structures that evolve separately but similar functions

#### FOSSILS

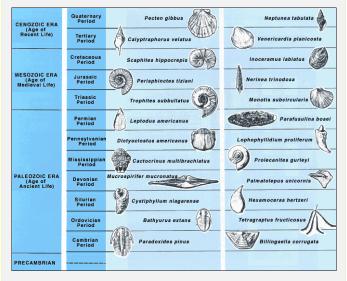
#### <u>Fossils</u>

Any preserved trace left by a previously living organism

#### Used for:

- Determining what extinct species were like
- Develops picture of what life was like
- Develops sequence of evolution in certain organism

#### Needs:


- Rapid burial by drifting sand, mud or volcanic ash
- Presence of hard body parts
- Bone preservation alkaline soils
- Long periods of stability
- Soft tissue preservation wet acidic soil w/ no oxygen

#### Conditions:

- Shallow lakes, marshes or swamps
- Trapped in ice low temp stop decay
- Dry cave deposits soft parts decay

#### <u>Problems with fossil record</u>

- Conditions for fossilization rarely occur
- Problems with dating techniques
- Seldom find complete fossils
- Fossils have been disturbed
- Fossils are not found yet



## DATING MECHANISMS

#### Determining the age of a fossil or artefact. BP = before present

#### ABSOLUTE DATING

#### Carbon 14 dating

Compares the radioisotope C14 to normal C12 in a fossil

Half-life – 5730 years

Can date organic material up to 60 000 years old Can only date small amounts

#### Potassium argon dating

Counts the Ar40 atoms trapped inside minerals and compares this to the K40 ratio Half-life – 1.25-1.3 billion years Can date after 100-200 million years Slow yet constant rate

#### <mark>ree ring dating</mark>

Counting the rings in the layers of wood to determine the age of trees. Comparing rings in fossil trees with living trees so age can be determined.

- Rings differ in width according to how favourable the growing season was

#### RELATIVE DATING

#### <u>Stratigraphy</u>

Study of layers or strata

- Principle of superposition: assumption that in layers of sedimentary rock, the layers on top are younger)
- Correlation of rock strata: matching rocks from different areas
   Fossils or artefacts can be buried by animals after deposition of sediment

Index fossils: were widely distributed and present for a short period of time

#### Fluorine dating

Fluoride ions in soil water move into bone and replace ions in the bone

Fossils with the same amount of fluorine In them can be assumed that they are the same age The more fluorine = the older the specimen

# **EVOLUTIONARY TRENDS**

Characteristics that enables an organism to survive and reproduce in its natural environment

#### EVOLUTIONARY TRENDS IN PRIMATES

|             | CHARACTERISTIC                     | TREND                                                                                                  |
|-------------|------------------------------------|--------------------------------------------------------------------------------------------------------|
|             | Mobility                           | Increasing mobility in digits and ability to move<br>independently, increase prehensility for climbing |
| DIGITS      | Opposability                       | First digit opposable to allow for manipulation                                                        |
|             | Claws/nails                        | Nails instead of claws increases grasping technique                                                    |
|             | Friction ridges and precision grip | Allows better grip & handle small objects effectively                                                  |
|             |                                    | 36 teeth in lemurs, lorises and New World monkeys                                                      |
|             |                                    | 32 teeth in Old World monkeys, apes and humans                                                         |
| DENTITION   |                                    | Monkeys and apes have large projecting canines with diastema                                           |
|             |                                    | 4 cusped molars in monkeys, 5 cusped in apes and humans                                                |
| SMELL       |                                    | Sense of smell reduced with gradual reduction in snout                                                 |
|             | Eyes                               | Increasing efficiency in vision                                                                        |
| VISION      |                                    | Gradually forward-facing eyes for stereoscopic visio                                                   |
|             | Eye socket                         | Eyes gradually become enclosed in bony socket to give protection                                       |
|             | Visual area of brain               | <ul> <li>Increasing areas of cerebrum devoted to vision</li> </ul>                                     |
|             |                                    | Rods and cones which allow for light and colour                                                        |
|             | Size                               | Increase in size relative to body size and complexity                                                  |
| BRAIN       | Convolutions                       | Gradual increase in number of folds in surface of<br>cerebrum to increase surface area of brain        |
|             | Cerebral cortex                    | Makes up increasingly large proportion of the brain                                                    |
| GESTATION   |                                    | Increasing length between fertilisation and birth                                                      |
| DEVELOPMENT | Dependence                         | Increasing length of time offspring are dependent on parents                                           |
|             | Sexual maturity                    | Later development of sexual maturity                                                                   |

#### ADAPTATIONS FOR BIPEDALISM

| LOCATION              | FEATURE        | DESCRIPTION                              | ADVANTAGE                                                                                           |
|-----------------------|----------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|
| SKULL                 | Foreman Magnum | Centrally placed at bottom of skull      | - Better balance of skull, allows supported by vertebral column                                     |
|                       |                |                                          | - Brings centre of gravity over feet                                                                |
|                       | Prognathism    | Flatter face                             | Allows better balance of skull                                                                      |
|                       | Size           | Shorter in length and wider, bowl shaped | Supports weight of upper body when standing erect                                                   |
| PELVIS                |                |                                          | Supports foetus during pregnancy                                                                    |
|                       |                |                                          | Provide larger SA for attachment of buttocks muscles for<br>walking                                 |
|                       | Position       | Tilted to vertical position              | Lowers centre of gravity and brings balance over feet                                               |
|                       | S-shaped curve | Lumbar curve                             | Positions trunk of body over the feet                                                               |
|                       |                |                                          | Carries weight of upper body                                                                        |
| CURVATURE OF<br>SPINE |                | Cervical curve                           | Positions head over the neck for smaller spinous processes                                          |
|                       |                |                                          | Head is forward facing                                                                              |
|                       | Femur          | Carrying angle                           | Distributes weight and brings it towards outside of femur, over feet to allow for greater stability |
|                       |                | Long legs compare arms                   | Longer legs lower centre of gravity which increases stability                                       |
|                       |                |                                          | Increase stride length when walking - Ability to hold tools whilst walking                          |
|                       | Knee           | Strong outer hinge/ condyles             | Supports weight due to carrying angle                                                               |
|                       |                | Can be straightened                      | - Allows for striding gait                                                                          |
|                       |                |                                          | - Centre of gravity falls infant of knees                                                           |
| FEET                  | Toes           | Larger calcareous bone                   | - Improves flexion                                                                                  |
|                       |                |                                          | - Takes weight when standing and walking                                                            |
|                       | Arches         | Transversal arch                         | Shock absorber                                                                                      |
|                       |                | Longitudinal arch                        | Transfers weight distribution and energy efficiency                                                 |

#### HOMININ ADAPTATIONS – PRIMATES TO HOMINIDS

Characteristics that enable an organism to survive and reproduce in its natural environment

| FEATURE          | DESCRIPTION                                                                                      | ADVANTAGE                                                                                                       |
|------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                  | Partial contraction of skeletal                                                                  | - Allows to keep head erect                                                                                     |
| muscle tone      | muscles                                                                                          | - Maintains equilibrium of the body                                                                             |
| MUSCLETONE       | Nervous system and sense<br>organs work with spine, hip,<br>knee, ankle and abdominal<br>muscles | - Sustained muscle tone in muscles which support an upright position                                            |
| STRIDING GAIT    | Walking where hip and knee fully straighten                                                      | Allows to walk in straight line                                                                                 |
|                  | Big toe in line with other toes                                                                  | Weight is transmitted from heel, to along outside of foot, across ball of foot and then propelled from big toe  |
|                  | Forward swinging of arms                                                                         | - Less energy is expended                                                                                       |
| SWINGING OF ARMS | compensates for natural rotation of trunk around pelvis                                          | - Keeps shoulders at right angle to direction of travel                                                         |
|                  | Femurs converge towards                                                                          | - Allows weight distribution to remain close to central axis                                                    |
| CARRYING ANGLE   | knees                                                                                            | of body                                                                                                         |
|                  |                                                                                                  | <ul> <li>Stability during walking as body can be rotated about<br/>lower leg - Walk in straight line</li> </ul> |

| FEATURE          | DESCRIPTION                                                                  | ADVANTAGE                                                                                                |
|------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                  | Human brain size is average                                                  | - Increases cranial capacity (volume inside cranium)                                                     |
|                  | of 1350cm whereas apes are between 400cm-500cm                               | - Increased thinking capacity and abstract thinking                                                      |
| LARGE BRAIN SIZE |                                                                              | - Higher proportions of cerebral cortex increases mobility                                               |
|                  | Convolutions                                                                 | Give a 50% increase in surface area which gives greater development of frontal lobe                      |
|                  | Frontal lobe                                                                 | <ul> <li>Higher order of thinking, reasoning, planning and<br/>processing</li> </ul>                     |
|                  |                                                                              | - Increase in size and convolutions                                                                      |
|                  | Cerebral cortex                                                              | <ul> <li>Have much a larger cerebral cortex area than our<br/>direct ancestors and great apes</li> </ul> |
|                  |                                                                              | • Site of higher function; vision, memory and reasoning                                                  |
|                  |                                                                              | <ul> <li>Allows development of special skills such as tool<br/>making</li> </ul>                         |
| SKULL            | Increased rounding of                                                        | More of skull is used to protect the brain and                                                           |
|                  | cranium and skull sized                                                      | accommodate for larger frontal lobe                                                                      |
| ENDOCASTS        | Impression from inside of brain<br>made from rock or other solid<br>material | Reveals trends in number of convolutions and size of frontal lobe                                        |

#### Prognathism & Dentition

|               | DESCRIPTION                |                                                             |
|---------------|----------------------------|-------------------------------------------------------------|
| FEATURE       | DESCRIPTION                | ADVANTAGE                                                   |
| DENTAL ARCADE | U shaped in primates and   |                                                             |
|               | more V shaped in humans    |                                                             |
|               | Absence in diastema        | Allow more space in mouth to articulate speech              |
| SIZE OF TEETH | Teeth size and molars      | No longer needed due to use in tools and softer foods       |
|               | reduced                    | developments                                                |
| PROGNATHISM   | Flattening of face,        | Allows frontal lobe to increase in size for higher order of |
|               | development of chin and    | thinking                                                    |
|               | more prominent nose        |                                                             |
| BROW RIDGE    | Sagittal crest disappeared | Humans able to hold neck up without large neck muscles      |
|               | Distinct forehead and      | Enlargement of cranial portion of brain to accommodate      |
|               | reduction in brow ridge    | increasing size of frontal lobe                             |

|                                                                                                               | FEATURE            | TREND                                                                                                         |
|---------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|
| AUSTRALOPITHECUS AFARENSIS                                                                                    | Structure of skull | <ul><li>No forehead</li><li>Large brow ridge</li></ul>                                                        |
| (4-2.5mil years ago)                                                                                          | Cranial capacity   | <ul><li>Small cranial capacity</li><li>430cm3</li></ul>                                                       |
| Low forehead<br>Brow ridge<br>Large, dish-<br>shaped face<br>Wide midface                                     | Dentition          | <ul><li>Diastema</li><li>Large molars</li><li>Large canines</li></ul>                                         |
| Little of the skull is<br>behind the foramen<br>magnum                                                        | Prognathism        | Large prognathic jaw                                                                                          |
| AUSTRALOPITHECUS AFRICANUS                                                                                    | Structure of skull | <ul><li>Small brow ridge</li><li>Round shaped head</li></ul>                                                  |
| (3-2mil years ago)                                                                                            | Cranial capacity   | <ul><li>Small cranial capacity</li><li>457cm3</li></ul>                                                       |
| Brow ridge                                                                                                    | Dentition          | <ul><li>Large teeth</li><li>Large molars</li></ul>                                                            |
| Lover face<br>protudes forward<br>wery large molars compared with                                             | Prognathism        | Large prognathic jaw                                                                                          |
| PARANTHROPUS ROBUSTUS<br>(1.9-1mil years ago)                                                                 | Structure of skull | <ul> <li>Mohawk shaped head</li> <li>Sagittal crest</li> <li>No forehead</li> <li>Large brow ridge</li> </ul> |
|                                                                                                               | Cranial capacity   | <ul><li>Small cranial capacity</li><li>542cm3</li></ul>                                                       |
|                                                                                                               | Dentition          | Large premolars                                                                                               |
|                                                                                                               | Prognathism        | • Wide jaw                                                                                                    |
| HOMO HABILIS<br>(2-1.5mil years ago)                                                                          | Structure of skull | <ul> <li>Smooth rounded<br/>cranium</li> <li>Weak forehead</li> <li>Small brow ridge</li> </ul>               |
| Bigger brain<br>(650-680cc)<br>Bulge in the<br>Brock's area                                                   | Cranial capacity   | <ul><li>Small cranial capacity</li><li>590cm3</li></ul>                                                       |
| of the brain<br>for speech<br>production                                                                      | Dentition          | Smaller teeth                                                                                                 |
| More of the skull is behind<br>the foramen magnum<br>Jaw is smaller in size than<br>in the australopithecines | Prognathism        | <ul><li>Small prognathism</li><li>Small jaw</li></ul>                                                         |

| HOMO ERECTUS<br>(1.8-250k years ago)<br>Buge in the Broa's<br>area of the brain terminest<br>speech production<br>Buge in Vermickes<br>Buge in Vermickes                                                                        | Structure of skull | <ul> <li>Chunky head</li> <li>Occipital bun</li> <li>Thick cranium</li> <li>Chunky brow ridge</li> <li>Weak forehead</li> <li>Large cranial capacity</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| area of the brain for<br>speech recognition<br>Flat face                                                                                                                                                                        | Cranial capacity   | <ul><li>1004cm3</li><li>Large teeth</li></ul>                                                                                                                   |
| Occipital lone<br>(burn-like swelling)                                                                                                                                                                                          | Dentition          | Droje stine in u                                                                                                                                                |
| Attachment for strong neck<br>muscles to stop the head<br>from sagging forward<br>di<br>difficult, but more<br>massive than our own<br>No chin                                                                                  | Prognathism        | <ul><li>Projecting jaw</li><li>Large prognathism</li></ul>                                                                                                      |
| HOMO NEANDERTHALENSIS                                                                                                                                                                                                           | Structure of skull | <ul><li>Occipital bun</li><li>Weak forehead</li></ul>                                                                                                           |
| (300–30k years ago)                                                                                                                                                                                                             | Cranial capacity   | <ul><li>Large cranial capacity</li><li>1485cm3</li></ul>                                                                                                        |
| Coccipital lobe<br>(swriting)<br>swelling)<br>Large prominant<br>nose and mid-facalal<br>projection                                                                                                                             | Dentition          | Large teeth                                                                                                                                                     |
| Skull widest at the base<br>(unlike modern skulls which<br>are widest near the top)<br>Powerful jaw but<br>reduced compared<br>to <i>H. erectus</i><br>Teeth are smaller<br>than <i>H. erectus</i> , but<br>bigger than our own | Prognathism        | <ul><li>No chin</li><li>Large jaw</li></ul>                                                                                                                     |
| HOMO SAPIENS<br>(30k-present)                                                                                                                                                                                                   | Structure of skull | <ul> <li>True forehead</li> <li>No brow ridges</li> <li>Nose present</li> </ul>                                                                                 |
|                                                                                                                                                                                                                                 | Cranial capacity   | <ul><li>Large cranial capacity</li><li>1350cm3</li></ul>                                                                                                        |
|                                                                                                                                                                                                                                 | Dentition          | <ul><li>Small teeth</li><li>No diastema</li></ul>                                                                                                               |
| ©Bone Clones® 2019                                                                                                                                                                                                              | Prognathism        | <ul><li>No prognathism</li><li>True chin</li><li>Small jaw</li></ul>                                                                                            |

#### TOOLS AND CULTURE

| HOMININ                                 | TOOL CULTURE                                                                                                                                                  | DESCRIPTION                                                                                                                                                                                                      | IMAGE            |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| AUSTRALOPITHECINES<br>&<br>HOMO HABILIS | OLDOWAN TOOLS <ul> <li>Simple, primitive, no predetermined design</li> <li>Made from stones and pebbles</li> </ul>                                            | <ul> <li>Basic pebble tools</li> <li>Choppers, scrapers,<br/>flakes and chisels</li> <li>Used to smash open<br/>bones</li> <li>Precision grip must<br/>have been<br/>employed with one<br/>round edge</li> </ul> |                  |
| HOMO ERECTUS                            | <ul> <li>ACHEULEAN TOOLS</li> <li>Manufacturing of tools influenced social organisation</li> <li>Included tools made from bones and stones</li> </ul>         | <ul> <li>Hand axes</li> <li>Teardrop in shape<br/>flaked all around the<br/>edges</li> <li>Worked on both<br/>sides – helped<br/>hunting</li> </ul>                                                              | ETT231 bon       |
| HOMO NEANDERTHAL                        | MOUSTERISN INDUSTRIES<br>• Production of<br>stone flakes that<br>could be trimmed<br>to create various<br>cutting, scraping,<br>piercing and<br>gouging tools | <ul> <li>Stones trimmed<br/>into disc-shaped<br/>core and struck by<br/>another piece to<br/>produce flakes</li> <li>Aided in clothes<br/>making for cooler<br/>climates</li> </ul>                              | Sit straper      |
| HOMO SAPIENS                            | AURIGNACIAN CULTURE<br>• Used bone and<br>stone to prepare<br>finely and crafted<br>tools                                                                     | <ul> <li>Rectangular<br/>'stone' blade tool<br/>with one or two<br/>sharp edges</li> <li>Made by pressure<br/>flaking</li> <li>Attached to<br/>branches to make<br/>axes</li> </ul>                              |                  |
|                                         | SOLUTREAN CULTURE<br>• More of a<br>decorative use,<br>served little<br>practical purposes                                                                    | <ul> <li>Laurel leaf or<br/>willow leaf shaped<br/>flake stone tools</li> <li>Intricate flaking on<br/>every edge<br/>Used as spears or<br/>cutting</li> </ul>                                                   | Fur 2. A Salaran |
|                                         | MAGDALENIAN CULTURE<br>• First tools made by<br>bone, antlers and<br>ivory                                                                                    | <ul> <li>Usually pointed,<br/>sometimes with<br/>barbs</li> <li>Included fish<br/>hooks,<br/>spearheads,<br/>harpoons and<br/>needles</li> <li>Burin, chisel like<br/>cutter was used to<br/>make</li> </ul>     |                  |